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Motivations

THE MOST EFFECTIVE METHODS FOR CURVE AND SURFACE DESIGN
generate a shape that

passes through all the vertices of a given control net

faithfully mimics its behaviour (no undesired undulations)

Used in CAGD: Proposed HERE:

F spline-based methods: interpolatory subdivision methods
approximating and interpolating designed from a class of
F subdivision methods: non-uniform local interpolatory
approximating and spline-reproducing cardinal splines (NULICS)
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Non-uniform local interpolatory cardinal splines (NULICS)

/ W. Dahmen, T.N.T Goodman, C.A. Micchelli (1988):
locally-supported fundamental splines leading to highly accurate local
interpolation methods

å require the solution of small linear systems (depend on the spline
degree, but not on the number of interpolation points)

/ C.K. Chui (1990) - J.J. Chen, A.K. Chan, C.K. Chui (1994):
introduction of explicitly represented local interpolatory cardinal splines
and their applications (uniform case)

/ C.K. Chui and J.M. De Villiers (1996):
construction of general-degree NULICS and explicit formulation of their
coefficients in terms of the data points

å no solution of linear systems is required
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Non-uniform local interpolatory cardinal splines (NULICS)

Main features of the degree-n local interpolatory cardinal spline basis:

arbitrary knots {xj}j∈Z

compact support [xj−n, xj+n]

Cn−1 continuity

polynomials reproduction up to degree n, starting from
arbitrarily non-equispaced samples

* No application example of the very general non-uniform case
(probably due to its involved and complex representation)
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NULICS: effectiveness of the local interpolatory method

Quadratic cardinal spline interpolation

UNIFORM KNOTS NON-UNIFORM KNOTS

CENTRIPETAL PARAMETERIZATION

/ M. Floater (2008): advantages of the centripetal parameterization in spline interpolation

/ N. Dyn, M. Floater, K. Hormann (2007): introduction of non-uniform parameters
in interpolatory 4-point subdivision

C. Beccari, G. Casciola, L. Romani* Non-uniform interpolatory subdivision designed from splines



Motivations
Non-uniform local interpolatory cardinal splines (NULICS)

The NULI 4-pt scheme
Application examples

Conclusions

NULICS: effectiveness of the local interpolatory method

Quadratic cardinal spline interpolation

UNIFORM KNOTS NON-UNIFORM KNOTS
CENTRIPETAL PARAMETERIZATION

/ M. Floater (2008): advantages of the centripetal parameterization in spline interpolation

/ N. Dyn, M. Floater, K. Hormann (2007): introduction of non-uniform parameters
in interpolatory 4-point subdivision

C. Beccari, G. Casciola, L. Romani* Non-uniform interpolatory subdivision designed from splines



Motivations
Non-uniform local interpolatory cardinal splines (NULICS)

The NULI 4-pt scheme
Application examples

Conclusions

NULICS: subdivision schemes design

The NULICS is not refinable!

There is no interpolatory subdivision scheme converging to the NULICS
basis in the limit.

But

We can design NULI insertion rules by recursively upsampling the NULICS
basis at its mid-knots.

In general: degree-n NULICS þ 2n-point NULI refinement equations

In this talk: quadratic NULICS þ NULI 4-point subdivision
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The deg-2 NULICS basis
Step 1: define the knot-partition

xj−2 xj−1 xj xj+1 xj+2

tj−4

dj−2

tj−3

dj−2

tj−2

dj−1

tj−1

dj−1

tj
dj

tj+1

dj

tj+2

dj+1

tj+3

dj+1

tj+4

xj+h (h = −2, ..., 2) arbitrary break points (parameters for points to be interpolated)

tj+2h ≡ xj+h (h = −2, ..., 2) knots for interpolation points

tj+2h+1 =
xj+h+xj+h+1

2 (h = −2, ..., 1) intermediate knots } complete knot sequence

dj+h (h = −2, ..., 1) knot intervals

Step 2: represent the deg-2 NULICS basis centered at tj in terms of B-spline basis functions

φj,2(x) =
5X

i=0

biNi+j−4,2(x)

where
b0 = −

(dj−2)2

4dj−1(dj−2+dj−1) b1 =
dj−2

4(dj−2+dj−1) b2 =
dj−1+3dj

4dj

b3 =
3dj−1+dj

4dj−1
b4 =

dj+1
4(dj+dj+1) b5 = −

(dj+1)2

4dj(dj+dj+1)

and Ni+j−4,2(x) is the quadratic B-spline with support [ti+j−4, ti+j−1].
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The deg-2 NULICS basis

φj,2(xj) = 1, φj,2(xj+h) = 0 ∀h 6= 0

-2 − 3
2

-1 − 1
2

0 1
2

1 3
2

2 xj−2 xj−1 xj xj+1 xj+2

UNIFORM KNOTS NON-UNIFORM KNOTS

C. Beccari, G. Casciola, L. Romani* Non-uniform interpolatory subdivision designed from splines



Motivations
Non-uniform local interpolatory cardinal splines (NULICS)

The NULI 4-pt scheme
Application examples

Conclusions

Construction
Refinement rules
Main properties

Towards a NULI 4-pt scheme

Let p0
j+h (h=-1,0,1,2) be the quadruple of starting points

Let x0
j+h (h=-1,0,1,2) be the centripetal parameter values of p0

j+h

Compute d0
j+h = x0

j+h+1−x0
j+h

2 (h=-1,0,1)

Let φj+h,2(x) be the NULICS basis centered at x0
j+h (h=-1,0,1,2)

Compute a0
h+1,j = φj+h,2

(
x0

j + x0
j+1

2

)
(h=-1,0,1,2)
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Important remarks

The centripetal parameterization {xk
j }j∈Z for the point set {pk

j }j∈Z
is not recomputed at each step.

Starting parameters d0
j are simply updated through the formula

dk+1
2j = dk+1

2j+1 =
dk

j

2

à the NULI 4-pt scheme is LINEAR!

When all d0
j are equal, the NULI 4-pt scheme becomes the uniform 4-pt:

ak
0,j = ak

3,j = − 1
16 , ak

1,j = ak
2,j = 9

16
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Properties of the NULI 4-pt scheme

QUADRATIC NULICS

local support [xj−2, xj+2]
([-2,2] in the uniform case)

C1 smoothness

polynomials reproduction up
to deg-2, also starting from
non-equispaced samples

NULI 4-POINT

å local support [xj−3, xj+3]
([-3,3] in the uniform case)

å C1 smoothness

å polynomials reproduction:

up to deg-2 starting from
non-equispaced samples

up to deg-3 starting from
equispaced samples
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Support

Proposition 1

The basis function for the NULI 4-pt scheme has local support [xj−3, xj+3].

Proof.

At step k = 0 the support width is σ = [xj−2, xj+2].
At each successive step it is extended by

xj−2 − xj−3

2k
and

xj+3 − xj+2

2k

on the left and right side respectively.
Thus, after N steps it will be

σ =

[
xj−2 −

N∑
k=1

xj−2 − xj−3

2k
, xj+2 +

N∑
k=1

xj+3 − xj+2

2k

]

and therefore when N → +∞ σ = [xj−3, xj+3].
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Support

-3 -2 -1 0 1 2 3 xj−3 xj−2 xj−1 xj xj+1 xj+2 xj+3

UNIFORM KNOTS NON-UNIFORM KNOTS

⇓ ⇓
σ = [−3, 3] σ = [xj−3, xj+3]
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Smoothness analysis

Proposition 2

The NULI 4-pt scheme generates C1 limit curves for any choice of initial knots.

Proof.

After a few rounds of subdivision, we come to the knot intervals configuration

..., a, a, b, b, b, ... (a, b > 0)

which corresponds to the eigenanalysis of the local subdivision matrix

M =



− 1
16

9
16

9
16

− 1
16

0 0 0
0 0 1 0 0 0 0

0 − 1
16

4a+5b
8(a+b)

2a+7b
16b

− a2

8b(a+b)
0 0

0 0 0 1 0 0 0

0 0 − b2

8a(a+b)
7a+2b
16a

5a+4b
8(a+b)

− 1
16

0

0 0 0 0 1 0 0
0 0 0 − 1

16
9
16

9
16

− 1
16


.
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Smoothness analysis

Eigenvalues of M : λ0 = 1, λ1 = 1
2 , |λi| < 1

2 ∀i ≥ 2

Right eigenvectors for λ0 and λ1: v0 =



1
1
1
1
1
1
1


, v1 =



−3
−2
−1
0

1/(ab)
2/(ab)
3/(ab)


The characteristic map ψ[s, x] (where s = 0, 1 enumerates the two sectors iden-
tified around the EV) is the scalar limit function associated with v1.
Because ψ[0, x] = −x and ψ[1, x] = x/(ab) for x > 0, thus ψ[0, x] and ψ[1, x]
cover respectively the negative and the positive portion of the parameter line in
a 1-1 manner. Therefore ψ is regular (i.e. it is a 1-1 and onto covering of the
parameter line). This proves C1 continuity of the associated scheme.

�
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Polynomial reproducibility

Proposition 3

The NULI 4-pt scheme can reproduce

the set Π2 of polynomials up to deg-2 starting from non-equispaced samples

the set Π3 of polynomials up to deg-3 starting from equispaced samples.

Proof.

The result follows from the fact that, starting with a point set P 0 ∈ Π2, at
each level k ≥ 0 we compute P k+1 by evaluating the NULICS interpolant

with basis φj,2 on knots xk
j , at

xk
j +xk

j+1
2 .

Π3 can be reproduced only when starting from equispaced samples because
in this case the refinement rules become those of the classical 4-pt scheme.
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NULI 4-pt limit curve NULICS quadratic interpolant
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Example 1: interpolation curves comparison

NULI 4-point limit curve

NULICS quadratic interpolant

1 the subdivision curve approximates
the initial polyline more closely!
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NULI 4-pt limit curve NULICS quadratic interpolant
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Conclusions

We have seen:

a new idea to construct spline-based high-quality 2n-point interpolatory
subdivision schemes;

a simplified explicit formulation for Chui and De Villiers NULICS;

a novel 4-pt subdivision scheme: non-uniform, local, interpolating (NULI),
C1, able to reproduce polynomials up to degree 2 also when starting from
non-equispaced samples.

The new family of non-uniform interpolatory schemes
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The NULI 6-point scheme

NULI 6-pt limit curve NULICS cubic interpolant

cubics reproduction from non-uniform samples
support σ = [xj−5, xj+5]
smoothness C2
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* includes 2n-point refinement rules designed from deg-n spline interpolants;

* produces spline-quality curves that faithfully mimic the behaviour of the
initial set of points;

* establishes a fundamental step towards the construction of a spline-quality
interpolatory scheme for surfaces of arbitrary topology
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Non-uniform local interpolatory subdivision surfaces (NULISS)

section polyline

initial mesh NULISS section curve
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