Non-uniform interpolatory subdivision designed from splines

C. Beccari, G. Casciola, L. Romani*

University of Bologna, Italy
*University of Milano-Bicocca, Italy

7th International Conference on Mathematical Methods for Curves and Surfaces
Tønsberg (Norway), June 26 - July 1, 2008
Outline

1 Motivations

2 Non-uniform local interpolatory cardinal splines (NULICS)

3 The NULI 4-pt scheme
 - Construction
 - Refinement rules
 - Main properties
 - Support
 - Smoothness
 - Polynomial reproduction

4 Application examples

5 Conclusions
THE MOST EFFECTIVE METHODS FOR CURVE AND SURFACE DESIGN generate a shape that

- passes through all the vertices of a given control net
- faithfully mimics its behaviour (no undesired undulations)
THE MOST EFFECTIVE METHODS FOR CURVE AND SURFACE DESIGN generate a shape that

- passes through all the vertices of a given control net
- faithfully mimics its behaviour (no undesired undulations)

Used in CAGD:

- \textit{spline-based methods}:
 approximating and interpolating
THE MOST EFFECTIVE METHODS FOR CURVE AND SURFACE DESIGN

generate a shape that

- passes through all the vertices of a given control net
- faithfully mimics its behaviour (no undesired undulations)

Used in CAGD:

- *spline-based methods:*
 - approximating and interpolating
- *subdivision methods:*
 - approximating and spline-reproducing
THE MOST EFFECTIVE METHODS FOR CURVE AND SURFACE DESIGN

generate a shape that

- passes through all the vertices of a given control net
- faithfully mimics its behaviour (no undesired undulations)

Used in CAGD:
- *spline-based methods:*
 - approximating and interpolating
- *subdivision methods:*
 - approximating and spline-reproducing

Proposed HERE:
interpolatory subdivision methods
designed from a class of
non-uniform local interpolatory cardinal splines (NULICS)
Non-uniform local interpolatory cardinal splines (NULICS)

W. Dahmen, T.N.T Goodman, C.A. Micchelli (1988): locally-supported fundamental splines leading to highly accurate local interpolation methods

- require the solution of small linear systems (depend on the spline degree, but not on the number of interpolation points)
Non-uniform local interpolatory cardinal splines (NULICS)

 - require the solution of small linear systems (depend on the spline degree, but not on the number of interpolation points)

Motivations

Non-uniform local interpolatory cardinal splines (NULICS)

The NULI 4-pt scheme

Application examples

Conclusions

Non-uniform local interpolatory cardinal splines (NULICS)

 locally-supported fundamental splines leading to highly accurate local
 interpolation methods

 ➡ require the solution of small linear systems (depend on the spline
 degree, but not on the number of interpolation points)

 introduction of explicitly represented local interpolatory cardinal splines
 and their applications (uniform case)

 construction of general-degree NULICS and explicit formulation of their
 coefficients in terms of the data points

 ➡ no solution of linear systems is required
Main features of the degree-n local interpolatory cardinal spline basis:

- arbitrary knots $\{x_j\}_{j \in \mathbb{Z}}$
- compact support $[x_j-n, x_j+n]$
- C^{n-1} continuity
- polynomials reproduction up to degree n, starting from arbitrarily non-equispaced samples
Main features of the degree-n local interpolatory cardinal spline basis:

- arbitrary knots $\{x_j\}_{j \in \mathbb{Z}}$
- compact support $[x_j-n, x_j+n]$
- C^{n-1} continuity
- polynomials reproduction up to degree n, starting from arbitrarily non-equispaced samples

No application example of the very general non-uniform case (probably due to its involved and complex representation)
NULICS: effectiveness of the local interpolatory method

Quadratic cardinal spline interpolation

UNIFORM KNOTS

NON-UNIFORM KNOTS
NULICS: effectiveness of the local interpolatory method

Quadratic cardinal spline interpolation

UNIFORM KNOTS

NON-UNIFORM KNOTS

CENTRIPETAL PARAMETERIZATION

▷ M. Floater (2008): advantages of the centripetal parameterization in spline interpolation

▷ N. Dyn, M. Floater, K. Hormann (2007): introduction of non-uniform parameters in interpolatory 4-point subdivision
The NULICS is not refirable!
The NULICS is not refinable!

- There is no interpolatory subdivision scheme converging to the NULICS basis in the limit.
The NULICS is not refirable!

- There is no interpolatory subdivision scheme converging to the NULICS basis in the limit.

But

- We can design NULI insertion rules by recursively upsampling the NULICS basis at its mid-knots.
The NULICS is not refinable!

- There is no interpolatory subdivision scheme converging to the NULICS basis in the limit.

But

- We can design NULI insertion rules by recursively upsampling the NULICS basis at its mid-knots.

- In general: degree-n NULICS \Rightarrow 2n-point NULI refinement equations
The NULICS is not refinable!

- There is no interpolatory subdivision scheme converging to the NULICS basis in the limit.

But

- We can design NULL insertion rules by recursively upsampling the NULICS basis at its mid-knots.

- In general: degree-\(n\) NULICS \(\Rightarrow\) \(2n\)-point NULL refinement equations

- In this talk: quadratic NULICS \(\Rightarrow\) NULL 4-point subdivision
The deg-2 NULICS basis

Step 1: define the knot-partition

\[x_{j-2} \quad x_{j-1} \quad x_j \quad x_{j+1} \quad x_{j+2} \]

\[x_{j+h} \quad (h = -2, \ldots, 2) \quad \text{arbitrary break points (parameters for points to be interpolated)} \]
The deg-2 NULICS basis

Step 1: define the knot-partition

\[
\begin{array}{llllllll}
 x_{j-2} & t_{j-4} & x_{j-1} & t_{j-3} & x_j & t_{j-2} & t_j & t_{j+1} & x_{j+1} & t_{j+2} & t_{j+3} & t_{j+4} & x_{j+2} \\
\end{array}
\]

\[t_{j+2h} \equiv x_{j+h} \quad (h = -2, \ldots, 2) \quad \text{knots for interpolation points}\]

\[t_{j+2h+1} = \frac{x_j + x_{j+h} + 1}{2} \quad (h = -2, \ldots, 1) \quad \text{intermediate knots}\]

\} \quad \text{complete knot sequence}
The deg-2 NULICS basis

Step 1: *define the knot-partition*

\[
\begin{align*}
 x_{j-2} & \quad t_{j-4} & \quad x_{j-1} & \quad t_{j-3} & \quad x_j & \quad t_{j-2} & \quad t_{j-1} & \quad t_j & \quad t_{j+1} & \quad x_{j+1} & \quad t_{j+2} & \quad t_{j+3} & \quad t_{j+4} \\
 t_{j-4} & \quad d_{j-2} & \quad t_{j-3} & \quad d_{j-2} & \quad t_{j-2} & \quad d_{j-1} & \quad t_{j-1} & \quad d_{j-1} & \quad t_j & \quad d_j & \quad t_{j+1} & \quad d_j & \quad t_{j+2} & \quad d_{j+1} & \quad t_{j+3} & \quad d_{j+1} & \quad t_{j+4}
\end{align*}
\]

\[t_{j+2h} \equiv x_{j+h} \quad (h = -2, \ldots, 2)\quad \text{knots for interpolation points}\]
\[t_{j+2h+1} = \frac{x_{j+h} + x_{j+h+1}}{2} \quad (h = -2, \ldots, 1)\quad \text{intermediate knots}\]
\[d_{j+h} \quad (h = -2, \ldots, 1)\quad \text{knot intervals}\]
The deg-2 NULICS basis

Step 1: define the knot-partition

\[
\begin{align*}
\begin{array}{cccccccc}
x_{j-2} & t_{j-4} & \cdots & t_{j-3} & t_{j-2} & \cdots & t_{j-1} & t_j & t_{j+1} & \cdots & x_{j+1} & t_{j+2} & \cdots & t_{j+3} & t_{j+4} \\
d_{j-2} & & \cdots & & d_{j-2} & & \cdots & d_{j-1} & d_j & \cdots & d_j & d_j+1 & \cdots & d_j+1
\end{array}
\end{align*}
\]

\[t_{j+2h} \equiv x_{j+h} \quad (h = -2, \ldots, 2) \quad \text{knots for interpolation points}\]

\[t_{j+2h+1} = \frac{x_{j+h} + x_{j+h+1}}{2} \quad (h = -2, \ldots, 1) \quad \text{intermediate knots}\]

\[d_{j+h} \quad (h = -2, \ldots, 1) \quad \text{knot intervals}\]

Step 2: represent the deg-2 NULICS basis centered at \(t_j\) in terms of B-spline basis functions

\[
\phi_{j,2}(x) = \sum_{i=0}^{5} b_i N_{i+j-4,2}(x)
\]

where

\[
\begin{align*}
b_0 &= -\frac{(d_{j-2})^2}{4d_{j-1}(d_{j-2}+d_{j-1})} \\
b_1 &= \frac{d_{j-2}}{4(d_{j-2}+d_{j-1})} \\
b_2 &= \frac{d_{j-1}+3d_j}{4d_j} \\
b_3 &= \frac{3d_{j-1}+d_j}{4d_j} \\
b_4 &= \frac{d_{j+1}}{4(d_j+d_{j+1})} \\
b_5 &= -\frac{(d_{j+1})^2}{4d_j(d_j+d_{j+1})}
\end{align*}
\]

and \(N_{i+j-4,2}(x)\) is the quadratic B-spline with support \([t_{i+j-4}, t_{i+j-1}]\).
The deg-2 NULICS basis

Step 1: \textit{define the knot-partition}

\[
\begin{align*}
x_j-2 & \quad t_j-4 & \quad x_j-1 & \quad t_j-3 & \quad x_j & \quad t_j-2 & \quad x_j & \quad t_j-1 & \quad x_j & \quad t_j & \quad x_j+1 & \quad t_j+1 & \quad x_j+2 & \quad t_j+2 & \quad x_j+3 & \quad t_j+3 & \quad t_j+4 \\
& \quad d_{j-2} & \quad & \quad & \quad & \quad d_{j-2} & \quad & \quad & \quad & \quad d_{j-1} & \quad & \quad & \quad & \quad d_{j-1} & \quad & \quad & \quad & \quad d_{j} & \quad & \quad & \quad & \quad d_{j} & \quad & \quad & \quad & \quad d_{j+1} & \quad & \quad & \quad & \quad d_{j+1} & \quad & \quad & \quad & \quad d_{j+1}
\end{align*}
\]

\[
t_{j+2h} \equiv x_{j+h} \quad (h = -2, \ldots, 2) \quad \text{knots for interpolation points}
\]

\[
t_{j+2h+1} = \frac{x_{j+h} + x_{j+h+1}}{2} \quad (h = -2, \ldots, 1) \quad \text{intermediate knots}
\]

\[
d_{j+h} \quad (h = -2, \ldots, 1) \quad \text{knot intervals}
\]

\[
\begin{align*}
\text{Step 2: } & \text{represent the deg-2 NULICS basis centered at } t_j \text{ in terms of B-spline basis functions} \\
\phi_{j,2}(x) &= \sum_{i=0}^{5} b_i N_{i+j-4,2}(x)
\end{align*}
\]

where

\[
\begin{align*}
b_0 &= -\frac{(d_{j-2})^2}{4d_{j-1}(d_{j-2}+d_{j-1})} \\
b_1 &= \frac{d_{j-2}}{4(d_{j-2}+d_{j-1})} \\
b_2 &= \frac{d_{j-1}+3d_{j}}{4d_j} \\
b_3 &= \frac{3d_{j-1}+d_{j}}{4d_{j-1}} \\
b_4 &= \frac{d_{j+1}}{4(d_{j}+d_{j+1})} \\
b_5 &= -\frac{(d_{j+1})^2}{4d_j(d_{j}+d_{j+1})}
\end{align*}
\]

and \(N_{i+j-4,2}(x) \) is the quadratic B-spline with support \([t_{i+j-4}, t_{i+j-1}]\).
The deg-2 NULICS basis

\[\phi_{j,2}(x_j) = 1, \quad \phi_{j,2}(x_{j+h}) = 0 \quad \forall h \neq 0 \]
Towards a NULI 4-pt scheme

- Let p_{j+h}^0 (h=-1,0,1,2) be the quadruple of starting points
Towards a NULI 4-pt scheme

- Let \(p_{j+h}^0 \) \((h=-1,0,1,2)\) be the quadruple of starting points

- Let \(x_{j+h}^0 \) \((h=-1,0,1,2)\) be the *centripetal parameter values* of \(p_{j+h}^0 \)
Towards a NULI 4-pt scheme

- Let p_{j+h}^0 (h=-1,0,1,2) be the quadruple of starting points
- Let x_{j+h}^0 (h=-1,0,1,2) be the centripetal parameter values of p_{j+h}^0
- Compute $a_{j+h}^0 = \frac{x_{j+h+1}^0 - x_{j+h}^0}{2}$ (h=-1,0,1)
Towards a NULI 4-pt scheme

- Let p_{j+h}^0 (h=-1,0,1,2) be the quadruple of starting points
- Let x_{j+h}^0 (h=-1,0,1,2) be the centripetal parameter values of p_{j+h}^0
- Compute $d_{j+h}^0 = \frac{x_{j+h+1}^0 - x_{j+h}^0}{2}$ (h=-1,0,1)
- Let $\phi_{j+h,2}(x)$ be the NULICS basis centered at x_{j+h}^0 (h=-1,0,1,2)
Towards a NULI 4-pt scheme

- Let \(p_{j+h}^0 \) (h=-1,0,1,2) be the quadruple of starting points
- Let \(x_{j+h}^0 \) (h=-1,0,1,2) be the *centripetal parameter values* of \(p_{j+h}^0 \)
- Compute \(d_{j+h}^0 = \frac{x_{j+h+1}^0 - x_{j+h}^0}{2} \) (h=-1,0,1)
- Let \(\phi_{j+h,2}(x) \) be the NULICS basis centered at \(x_{j+h}^0 \) (h=-1,0,1,2)
- Compute \(a_{h+1,j}^0 = \phi_{j+h,2} \left(\frac{x_{j}^0 + x_{j+1}^0}{2} \right) \) (h=-1,0,1,2)
Towards a NULI 4-pt scheme

\[
\begin{align*}
 a_{0,j}^0 &= -\frac{(d_j^0)^2}{8a_{j-1}^0(d_{j-1}^0 + d_j^0)} \\
 a_{1,j}^0 &= \frac{(d_j^0)^2 + (3d_{j-1}^0 + d_{j+1}^0)d_j^0 + 4d_{j-1}^0 d_{j+1}^0}{8a_{j-1}^0(d_j^0 + d_{j+1}^0)} \\
 a_{2,j}^0 &= \frac{(d_j^0)^2 + (d_{j-1}^0 + 3d_{j+1}^0)d_j^0 + 4d_{j-1}^0 d_{j+1}^0}{8a_{j+1}^0(d_j^0 + d_{j+1}^0)} \\
 a_{3,j}^0 &= -\frac{(d_j^0)^2}{8a_{j+1}^0(d_j^0 + d_{j+1}^0)}
\end{align*}
\]
The NULI 4-pt scheme

- d^0_j starting parameters

At each step $k \geq 0$

REFINEMENT EQUATIONS

\[
\begin{align*}
 p_{2j}^{k+1} &= p_j^k \\
 p_{2j+1}^{k+1} &= a_{0,j}^k p_j^{k-1} + a_{1,j}^k p_j^k + a_{2,j}^k p_{j+1}^k + a_{3,j}^k p_{j+2}^k
\end{align*}
\]

\[
\begin{align*}
 a_{0,j}^k &= -\frac{(d_j^k)^2}{8d_j^k(d_j^k-1+d_j^k)} \\
 a_{1,j}^k &= \frac{(d_j^k)^2 + (3d_j^k - 1 + d_j^k+1)d_j^k + 4d_j^k - 1}{8d_j^k-1(d_j^k+d_j^k+1)} \\
 a_{2,j}^k &= \frac{(d_j^k)^2 + (d_j^k-1+3d_j^k+1)d_j^k + 4d_j^k - 1}{8d_j^k+1(d_j^k-1+d_j^k)} \\
 a_{3,j}^k &= -\frac{(d_j^k)^2}{8d_j^k+1(d_j^k+d_j^k+1)}
\end{align*}
\]
The NULI 4-pt scheme

Starting parameters

At each step $k \geq 0$

\[
\begin{align*}
d_j^0 & \quad \text{starting parameters} \\
p_{2j}^{k+1} & = p_j^k \\
p_{2j+1}^{k+1} & = a_{0,j}^k p_{j-1}^k + a_{1,j}^k p_j^k + a_{2,j}^k p_{j+1}^k + a_{3,j}^k p_{j+2}^k
\end{align*}
\]

REFINEMENT EQUATIONS

\[
\begin{align*}
a_{0,j}^k & = - \frac{(d_j^k)^2}{8d_{j-1}^k(d_j^k - d_j^k + 1)} \\
a_{1,j}^k & = \frac{(d_j^k)^2 + (3d_j^k - 1 + d_j^k + 1)d_j^k + 4d_j^k - 1d_j^k + 1}{8d_{j-1}^k(d_j^k + d_j^k + 1)} \\
a_{2,j}^k & = \frac{(d_j^k)^2 + (d_j^k - 1 + 3d_j^k + 1)d_j^k + 4d_j^k - 1d_j^k + 1}{8d_{j+1}^k(d_j^k - 1 + d_j^k)} \\
a_{3,j}^k & = - \frac{(d_j^k)^2}{8d_{j+1}^k(d_j^k + d_j^k + 1)}
\end{align*}
\]
The NULI 4-pt scheme

$\triangleright \quad d_j^0$ starting parameters

At each step $k \geq 0$

REFINEMENT EQUATIONS

\[
\begin{align*}
p_{2j}^{k+1} &= p_j^k \\
p_{2j+1}^{k+1} &= a_{0,j}^k p_{j-1}^k + a_{1,j}^k p_j^k + a_{2,j}^k p_{j+1}^k + a_{3,j}^k p_{j+2}^k
\end{align*}
\]

\[
\begin{align*}
a_{0,j}^k &= - \frac{(d_j^k)^2}{8d_j^{k-1}(d_j^k - d_{j-1}) (d_j^k + d_{j+1})} \\
a_{1,j}^k &= \frac{(d_j^k)^2 + (3d_j^{k-1} + d_{j+1}) d_j^k + 4d_j^{k-1} d_{j+1}}{8d_j^{k-1}(d_j^k + d_{j+1})} \\
a_{2,j}^k &= \frac{(d_j^k)^2 + (d_j^{k-1} + 3d_j^{k+1}) d_j^k + 4d_j^{k-1} d_{j+1}}{8d_j^{k+1}(d_j^k - d_{j+1})} \\
a_{3,j}^k &= - \frac{(d_j^k)^2}{8d_j^{k+1}(d_j^k + d_{j+1})}
\end{align*}
\]
The NULI 4-pt scheme

\(d_j^0 \) starting parameters

At each step \(k \geq 0 \)

REFINEMENT EQUATIONS

\[
\begin{align*}
p_{2j}^{k+1} & = p_j^k \\
p_{2j+1}^{k+1} & = a_{0,j}^k p_{j-1}^k + a_{1,j}^k p_j^k + a_{2,j}^k p_{j+1}^k + a_{3,j}^k p_{j+2}^k
\end{align*}
\]

\[
\begin{align*}
a_{0,j}^k & = -\frac{(d_j^k)^2}{8d_j^{k-1}(d_j^k + d_j^{k+1})} \\
a_{1,j}^k & = \frac{(d_j^k)^2 + (3d_j^{k+1} - d_j^k + 1) d_j^k + 4d_j^{k-1}d_j^{k+1}}{8d_j^{k-1}(d_j^k + d_j^{k+1})} \\
a_{2,j}^k & = \frac{(d_j^k)^2 + (3d_j^{k-1} + 3d_j^{k+1}) d_j^k + 4d_j^{k-1}d_j^{k+1}}{8d_j^{k-1}(d_j^k + d_j^{k+1})} \\
a_{3,j}^k & = -\frac{(d_j^k)^2}{8d_j^{k+1}(d_j^k + d_j^{k+1})}
\end{align*}
\]
The NULI 4-pt scheme

At each step $k \geq 0$

REFINEMENT EQUATIONS

\[
p_{2j}^{k+1} = p_{j}^{k}
\]
\[
p_{2j+1}^{k+1} = a_{0,j}^{k} p_{j-1}^{k} + a_{1,j}^{k} p_{j}^{k} + a_{2,j}^{k} p_{j+1}^{k} + a_{3,j}^{k} p_{j+2}^{k}
\]

\[
a_{0,j}^{k} = - \frac{(d_{j}^{k})^2}{8d_{j-1}^{k}(d_{j-1}^{k} + d_{j}^{k})}
\]
\[
a_{1,j}^{k} = \frac{(d_{j}^{k})^2 + (3d_{j-1}^{k} + d_{j+1}^{k})d_{j}^{k} + 4d_{j-1}^{k}d_{j+1}^{k}}{8d_{j-1}^{k}(d_{j-1}^{k} + d_{j}^{k} + d_{j}^{k} + 1)}
\]
\[
a_{2,j}^{k} = \frac{(d_{j}^{k})^2 + (d_{j-1}^{k} + 3d_{j+1}^{k})d_{j}^{k} + 4d_{j-1}^{k}d_{j+1}^{k}}{8d_{j+1}^{k}(d_{j-1}^{k} + d_{j}^{k})}
\]
\[
a_{3,j}^{k} = - \frac{(d_{j}^{k})^2}{8d_{j+1}^{k}(d_{j}^{k} + d_{j}^{k} + 1)}
\]
The NULI 4-pt scheme

$\Rightarrow \quad d^0_j \text{ starting parameters}$

At each step $k \geq 0$

REFINEMENT EQUATIONS

$p_{2j}^{k+1} = p_j^k$

$p_{2j+1}^{k+1} = a_{0,j}^k p_{j-1}^k + a_{1,j}^k p_j^k + a_{2,j}^k p_{j+1}^k + a_{3,j}^k p_{j+2}^k$

Coefficients $a_{0,j}^k, \ldots, a_{3,j}^k$ coincide with the values of the deg-2 basis functions $\phi_{j-1,2}, \ldots, \phi_{j+2,2}$ defined on the refined knot-partition with $d_j^0 / 2^k$-length intervals, at the central knot $x_j^k + x_{j+1}^k / 2$.

\[
\begin{align*}
a_{0,j}^k &= -\frac{(d_j^k)^2}{8d_{j-1}^k (d_{j-1}^k + d_j^k)} \\
\frac{d_{j+1}^k}{2j} &= \frac{d_{j+1}^k}{2j+1} = d_j^k / 2 \\
a_{1,j}^k &= \frac{(d_j^k)^2 + (3d_{j-1}^k + d_{j+1}^k)d_j^k + 4d_{j-1}^k d_{j+1}^k}{8d_{j-1}^k (d_{j-1}^k + d_j^k + 1)} \\
a_{2,j}^k &= \frac{(d_j^k)^2 + (d_{j-1}^k + 3d_{j+1}^k)d_j^k + 4d_{j-1}^k d_{j+1}^k}{8d_{j+1}^k (d_{j-1}^k + d_j^k)} \\
a_{3,j}^k &= -\frac{(d_j^k)^2}{8d_{j+1}^k (d_j^k + d_j^k + 1)}
\end{align*}
\]
The NULI 4-pt scheme

> \(d^0_j \) starting parameters

At each step \(k \geq 0 \)

REFINEMENT EQUATIONS

\[
\begin{align*}
 p^{k+1}_{2j} &= p^k_j \\
 p^{k+1}_{2j+1} &= a^k_{0,j} p^k_{j-1} + a^k_{1,j} p^k_j + a^k_{2,j} p^k_{j+1} + a^k_{3,j} p^k_{j+2}
\end{align*}
\]

> \(d^{k+1}_{2j} = d^{k+1}_{2j+1} = \frac{d^k_j}{2} \) parameters updating

\[
\begin{align*}
 a^k_{0,j} &= -\frac{(d^k_j)^2}{8d^k_{j-1}(d^k_j-1+d^k_j)} \\
 a^k_{1,j} &= \frac{(d^k_j)^2 + (3d^k_{j-1}+d^k_{j+1})d^k_j + 4d^k_{j-1}d^k_{j+1}}{8d^k_{j-1}(d^k_j+d^k_{j+1})} \\
 a^k_{2,j} &= \frac{(d^k_j)^2 + (d^k_{j-1}+3d^k_{j+1})d^k_j + 4d^k_{j-1}d^k_{j+1}}{8d^k_{j+1}(d^k_j-1+d^k_j)} \\
 a^k_{3,j} &= -\frac{(d^k_j)^2}{8d^k_{j+1}(d^k_j+d^k_{j+1})}
\end{align*}
\]
Important remarks

- The centripetal parameterization \(\{x_j^k\}_{j \in \mathbb{Z}} \) for the point set \(\{p_j^k\}_{j \in \mathbb{Z}} \) is not recomputed at each step.
Important remarks

- The centripetal parameterization \(\{x^k_j\}_{j \in \mathbb{Z}} \) for the point set \(\{p^k_j\}_{j \in \mathbb{Z}} \) is not recomputed at each step.

Starting parameters \(d^0_j \) are simply updated through the formula

\[
d_{2j+1}^{k+1} = d_{2j+1}^k = \frac{d_j^k}{2}
\]
Important remarks

- The centripetal parameterization $\{x^k_j\}_{j \in \mathbb{Z}}$ for the point set $\{p^k_j\}_{j \in \mathbb{Z}}$ is not recomputed at each step.

Starting parameters d^0_j are simply updated through the formula

$$d_{2j}^{k+1} = d_{2j+1}^{k+1} = \frac{d_j^k}{2}$$

→ the NULI 4-pt scheme is LINEAR!
Important remarks

- The centripetal parameterization \(\{x_j^k\}_{j \in \mathbb{Z}} \) for the point set \(\{p_j^k\}_{j \in \mathbb{Z}} \) is *not* recomputed at each step.

Starting parameters \(d_j^0 \) are simply updated through the formula

\[
d_{2j}^{k+1} = d_{2j+1}^{k+1} = \frac{d_j^k}{2}
\]

- the NULI 4-pt scheme is LINEAR!

- When all \(d_j^0 \) are *equal*, the NULI 4-pt scheme becomes the *uniform* 4-pt:

\[
a_{0,j}^k = a_{3,j}^k = -\frac{1}{16}, \quad a_{1,j}^k = a_{2,j}^k = \frac{9}{16}
\]
Properties of the NULI 4-pt scheme

QUADRATIC NULICS

NULI 4-POINT

C. Beccari, G. Casciola, L. Romani* Non-uniform interpolatory subdivision designed from splines
Properties of the NULI 4-pt scheme

QUADRATIC NULICS

- Local support \([x_{j-2}, x_{j+2}]\)

 \([-2,2]\) in the uniform case

NULI 4-POINT

- Local support \([x_{j-3}, x_{j+3}]\)

 \([-3,3]\) in the uniform case
Properties of the NULI 4-pt scheme

QUADRATIC NULICS

- local support $[x_{j-2}, x_{j+2}]$
 (-2,2] in the uniform case)

- C^1 smoothness

NULI 4-POINT

- local support $[x_{j-3}, x_{j+3}]$
 (-3,3] in the uniform case)

- C^1 smoothness
Properties of the NULI 4-pt scheme

QUADRATIC NULICS

- local support \([x_{j-2}, x_{j+2}]\) ([-2,2] in the uniform case)
- \(C^1\) smoothness
- polynomials reproduction up to deg-2, also starting from non-equispaced samples

NULI 4-POINT

- local support \([x_{j-3}, x_{j+3}]\) ([3,3] in the uniform case)
- \(C^1\) smoothness
- polynomials reproduction:
 - up to deg-2 starting from non-equispaced samples
 - up to deg-3 starting from equispaced samples
Proposition 1

The basis function for the NULI 4-pt scheme has local support \([x_{j-3}, x_{j+3}]\).

Proof.

At step \(k = 0\) the support width is \(\sigma = [x_{j-2}, x_{j+2}]\).

At each successive step it is extended by

\[
\frac{x_{j-2} - x_{j-3}}{2^k} \quad \text{and} \quad \frac{x_{j+3} - x_{j+2}}{2^k}
\]

on the left and right side respectively.

Thus, after \(N\) steps it will be

\[
\sigma = \left[x_{j-2} - \sum_{k=1}^{N} \frac{x_{j-2} - x_{j-3}}{2^k}, x_{j+2} + \sum_{k=1}^{N} \frac{x_{j+3} - x_{j+2}}{2^k} \right]
\]

and therefore when \(N \to +\infty\) \(\sigma = [x_{j-3}, x_{j+3}]\).
Support

UNIFORM KNOTS

\[\sigma = [-3, 3] \]

NON-UNIFORM KNOTS

\[\sigma = [x_{j-3}, x_{j+3}] \]
Proposition 2

The NULI 4-pt scheme generates C^1 limit curves for any choice of initial knots.

Proof.

After a few rounds of subdivision, we come to the knot intervals configuration

$$\ldots, a, a, b, b, b, \ldots \quad (a, b > 0)$$

which corresponds to the eigenanalysis of the local subdivision matrix

$$M = \begin{bmatrix} \frac{-1}{16} & \frac{9}{16} & \frac{9}{16} & \frac{-1}{16} & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{16} & 0 & 0 & 0 & 0 \\ 0 & -\frac{1}{16} & \frac{4a+5b}{8(a+b)} & \frac{2a+7b}{16b} & -\frac{a^2}{8b(a+b)} & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & -\frac{b^2}{8a(a+b)} & \frac{7a+2b}{16a} & \frac{5a+4b}{8(a+b)} & -\frac{1}{16} & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -\frac{1}{16} & \frac{9}{16} & \frac{9}{16} & -\frac{1}{16} \end{bmatrix}.$$
Smoothness analysis

- **Eigenvalues** of M: $\lambda_0 = 1$, $\lambda_1 = \frac{1}{2}$, $|\lambda_i| < \frac{1}{2}$ $\forall i \geq 2$

- **Right eigenvectors** for λ_0 and λ_1: $v_0 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$, $v_1 = \begin{bmatrix} -3 \\ -2 \\ -1 \\ 0 \\ 1/(ab) \\ 2/(ab) \\ 3/(ab) \end{bmatrix}$

The characteristic map $\psi[s, x]$ (where $s = 0, 1$ enumerates the two sectors identified around the EV) is the scalar limit function associated with v_1. Because $\psi[0, x] = -x$ and $\psi[1, x] = x/(ab)$ for $x > 0$, thus $\psi[0, x]$ and $\psi[1, x]$ cover respectively the negative and the positive portion of the parameter line in a 1-1 manner. Therefore ψ is regular (i.e. it is a 1-1 and onto covering of the parameter line). This proves C^1 continuity of the associated scheme.
Proposition 3

The NULI 4-pt scheme can reproduce

- the set Π_2 of polynomials up to deg-2 starting from non-equispaced samples
- the set Π_3 of polynomials up to deg-3 starting from equispaced samples.

Proof.

The result follows from the fact that, starting with a point set $P^0 \in \Pi_2$, at each level $k \geq 0$ we compute P^{k+1} by evaluating the NULICS interpolant with basis $\phi_{j,2}$ on knots x_j^k, at $\frac{x_j^k + x_{j+1}^k}{2}$.

Π_3 can be reproduced only when starting from equispaced samples because in this case the refinement rules become those of the classical 4-pt scheme.
Example 1

NULI 4-pt limit curve

NULICS quadratic interpolant
Example 1

NULI 4-pt limit curve

NULICS quadratic interpolant
Example 1: interpolation curves comparison

NULI 4-point limit curve
NULICS quadratic interpolant

🔗 the subdivision curve approximates the initial polyline more closely!
Example 2

NULI 4-pt limit curve

NULICS quadratic interpolant
Example 2

NULI 4-pt limit curve

NULICS quadratic interpolant
Example 2: interpolation curves comparison

NULI 4-point limit curve
NULICS quadratic interpolant

[..] the subdivision curve approximates the initial polyline more closely!
We have seen:

- **a new idea** to construct spline-based high-quality $2n$-point interpolatory subdivision schemes;
Conclusions

We have seen:

- a new idea to construct spline-based high-quality $2n$-point interpolatory subdivision schemes;
- a simplified explicit formulation for Chui and De Villiers NULICS;
Conclusions

We have seen:

- a new idea to construct spline-based high-quality $2n$-point interpolatory subdivision schemes;
- a simplified explicit formulation for Chui and De Villiers NULICS;
- a novel 4-pt subdivision scheme: non-uniform, local, interpolating (NULI), C^1, able to reproduce polynomials up to degree 2 also when starting from non-equispaced samples.
We have seen:

- a new idea to construct spline-based high-quality $2n$-point interpolatory subdivision schemes;
- a simplified explicit formulation for Chui and De Villiers NULICS;
- a novel 4-pt subdivision scheme: non-uniform, local, interpolating (NULI), C^1, able to reproduce polynomials up to degree 2 also when starting from non-equispaced samples.

The new family of non-uniform interpolatory schemes

- includes $2n$-point refinement rules designed from deg-n spline interpolants;
The NULI 6-point scheme

- cubics reproduction from non-uniform samples
- support $\sigma = [x_{j-5}, x_{j+5}]$
- smoothness C^2

NULI 6-pt limit curve

NULICS cubic interpolant

C. Beccari, G. Casciola, L. Romani* Non-uniform interpolatory subdivision designed from splines
The NULI 6-point scheme

- NULI 6-pt limit curve
 - cubics reproduction from non-uniform samples
 - support $\sigma = [x_{j-5}, x_{j+5}]$
 - smoothness C^2

- NULICS cubic interpolant
Conclusions

We have seen:

- a new idea to construct spline-based high-quality $2n$-point interpolatory subdivision schemes;
- a simplified explicit formulation for Chui and De Villiers NULICS;
- a novel 4-pt subdivision scheme: non-uniform, local, interpolating (NULI), C^1, able to reproduce polynomials up to degree 2 also when starting from non-equispaced samples.

The new family of non-uniform interpolatory schemes

- includes $2n$-point refinement rules designed from deg-n spline interpolants;
- produces spline-quality curves that faithfully mimic the behaviour of the initial set of points;
We have seen:

- a new idea to construct spline-based high-quality $2n$-point interpolatory subdivision schemes;
- a simplified explicit formulation for Chui and De Villiers NULICS;
- a novel 4-pt subdivision scheme: non-uniform, local, interpolating (NULI), C^1, able to reproduce polynomials up to degree 2 also when starting from non-equispaced samples.

The new family of non-uniform interpolatory schemes

- includes $2n$-point refinement rules designed from deg-n spline interpolants;
- produces spline-quality curves that faithfully mimic the behaviour of the initial set of points;
- establishes a fundamental step towards the construction of a spline-quality interpolatory scheme for surfaces of arbitrary topology

SIMAI Conference, Rome (Italy) - September ’08
Non-uniform local interpolatory subdivision surfaces (NULISS)

initial mesh

NULISS

section polyline

section curve
Non-uniform local interpolatory subdivision surfaces (NULISS)
Bibliography

Thank you!