Non-uniform interpolatory subdivision designed from splines

C. Beccari, G. Casciola, L. Romani*

University of Bologna, Italy *University of Milano-Bicocca, Italy

7th International Conference on Mathematical Methods for Curves and Surfaces Tønsberg (Norway), June 26 - July 1, 2008

Outline

Motivations

2 Non-uniform local interpolatory cardinal splines (NULICS)

3 The NULI 4-pt scheme

- Construction
- Refinement rules
- Main properties
 - Support
 - Smoothness
 - Polynomial reproduction

Application examples

5 Conclusions

Non-uniform local interpolatory cardinal splines (NULICS) The NULI 4-pt scheme Application examples Conclusions

Motivations

THE MOST EFFECTIVE METHODS FOR CURVE AND SURFACE DESIGN generate a shape that

- passes through all the vertices of a given control net
- faithfully mimics its behaviour (no undesired undulations)

Non-uniform local interpolatory cardinal splines (NULICS) The NULI 4-pt scheme Application examples Conclusions

Motivations

THE MOST EFFECTIVE METHODS FOR CURVE AND SURFACE DESIGN generate a shape that

- passes through all the vertices of a given control net
- faithfully mimics its behaviour (no undesired undulations)

Used in CAGD:

spline-based methods:
 approximating and interpolating

3 A

Non-uniform local interpolatory cardinal splines (NULICS) The NULI 4-pt scheme Application examples Conclusions

Motivations

THE MOST EFFECTIVE METHODS FOR CURVE AND SURFACE DESIGN generate a shape that

- passes through all the vertices of a given control net
- faithfully mimics its behaviour (no undesired undulations)

Used in CAGD:

spline-based methods:
 approximating and interpolating
 subdivision methods:
 approximating and spline-reproducing

Non-uniform local interpolatory cardinal splines (NULICS) The NULI 4-pt scheme Application examples Conclusions

Motivations

THE MOST EFFECTIVE METHODS FOR CURVE AND SURFACE DESIGN generate a shape that

- passes through all the vertices of a given control net
- faithfully mimics its behaviour (no undesired undulations)

Used in CAGD:

spline-based methods:
 approximating and interpolating
 subdivision methods:
 approximating and spline-reproducing

Proposed HERE:

interpolatory subdivision methods designed from a class of non-uniform local interpolatory cardinal splines (NULICS)

Non-uniform local interpolatory cardinal splines (NULICS)

- W. Dahmen, T.N.T Goodman, C.A. Micchelli (1988): locally-supported fundamental splines leading to highly accurate local interpolation methods
 - require the solution of small linear systems (depend on the spline degree, but not on the number of interpolation points)

Non-uniform local interpolatory cardinal splines (NULICS)

- W. Dahmen, T.N.T Goodman, C.A. Micchelli (1988): locally-supported fundamental splines leading to highly accurate local interpolation methods
 - require the solution of small linear systems (depend on the spline degree, but not on the number of interpolation points)
- C.K. Chui (1990) J.J. Chen, A.K. Chan, C.K. Chui (1994): introduction of explicitly represented local interpolatory cardinal splines and their applications (uniform case)

Non-uniform local interpolatory cardinal splines (NULICS)

- W. Dahmen, T.N.T Goodman, C.A. Micchelli (1988): locally-supported fundamental splines leading to highly accurate local interpolation methods
 - require the solution of small linear systems (depend on the spline degree, but not on the number of interpolation points)
- C.K. Chui (1990) J.J. Chen, A.K. Chan, C.K. Chui (1994): introduction of explicitly represented local interpolatory cardinal splines and their applications (uniform case)
- C.K. Chui and J.M. De Villiers (1996): construction of general-degree NULICS and explicit formulation of their coefficients in terms of the data points
 - ➡ no solution of linear systems is required

向下 イヨト イヨト

Non-uniform local interpolatory cardinal splines (NULICS)

Main features of the degree-n local interpolatory cardinal spline basis:

- arbitrary knots $\{x_j\}_{j\in\mathbb{Z}}$
- compact support $[x_{j-n}, x_{j+n}]$
- C^{n-1} continuity
- polynomials reproduction up to degree *n*, starting from arbitrarily non-equispaced samples

Non-uniform local interpolatory cardinal splines (NULICS)

Main features of the degree-n local interpolatory cardinal spline basis:

- arbitrary knots $\{x_j\}_{j\in\mathbb{Z}}$
- compact support $[x_{j-n}, x_{j+n}]$
- C^{n-1} continuity
- polynomials reproduction up to degree *n*, starting from arbitrarily non-equispaced samples

 No application example of the very general non-uniform case (probably due to its involved and complex representation)

- 2 国家 - 2 国家

NULICS: effectiveness of the local interpolatory method

Quadratic cardinal spline interpolation

NULICS: effectiveness of the local interpolatory method

Quadratic cardinal spline interpolation

NULICS: subdivision schemes design

The NULICS is not refinable!

Э

NULICS: subdivision schemes design

The NULICS is not refinable!

• There is no interpolatory subdivision scheme converging to the NULICS basis in the limit.

NULICS: subdivision schemes design

The NULICS is not refinable!

• There is no interpolatory subdivision scheme converging to the NULICS basis in the limit.

But

• We can design NULI insertion rules by recursively upsampling the NULICS basis at its *mid-knots*.

NULICS: subdivision schemes design

The NULICS is not refinable!

• There is no interpolatory subdivision scheme converging to the NULICS basis in the limit.

But

- We can design NULI insertion rules by recursively upsampling the NULICS basis at its *mid-knots*.
- In general: degree-n NULICS \Rightarrow 2n-point NULI refinement equations

NULICS: subdivision schemes design

The NULICS is not refinable!

• There is no interpolatory subdivision scheme converging to the NULICS basis in the limit.

But

- We can design NULI insertion rules by recursively upsampling the NULICS basis at its *mid-knots*.
- In general: degree-n NULICS \Rightarrow 2n-point NULI refinement equations
- In this talk: quadratic NULICS \Rightarrow NULI 4-point subdivision

- 2 国际 - 2 国际

The deg-2 NULICS basis

Step 1: *define the knot-partition*

x_{j+h} (h = -2, ..., 2) arbitrary break points (parameters for points to be interpolated)

3

・ 同 ト ・ ヨ ト ・ ヨ ト

The deg-2 NULICS basis

Step 1: *define the knot-partition*

x_{j-2}		x_{j-1}		x_j		x_{j+1}		x_{j+2}
t_{j-4}	t_{j-3}	t_{j-2}	t_{j-1}	t_j	t_{j+1}	t_{j+2}	t_{j+3}	t_{j+4}

$t_{j+2h} \equiv x_{j+h} \ (h = -2,, 2)$	knots for i	nterpolation points	ſ	
$t_{j+2h+1} = \frac{x_{j+h} + x_{j+h+1}}{2} (h = 1)$	-2,, 1)	intermediate knots	} com	plete knot sequence

3

(4 同) 4 ヨ) 4 ヨ)

The deg-2 NULICS basis

Step 1: *define the knot-partition*

$$\begin{array}{c} x_{j-2} \\ t_{j-4} \\ t_{j-2} \end{array} \begin{array}{c} x_{j-1} \\ t_{j-3} \\ t_{j-2} \end{array} \begin{array}{c} x_{j-1} \\ t_{j-2} \end{array} \begin{array}{c} t_{j-1} \\ t_{j-1} \end{array} \begin{array}{c} t_{j-1} \\ t_{j-1} \end{array} \begin{array}{c} x_{j} \\ t_{j} \\ t_{j} \end{array} \begin{array}{c} x_{j} \\ t_{j+1} \end{array} \begin{array}{c} x_{j+1} \\ t_{j+2} \\ t_{j+2} \end{array} \begin{array}{c} x_{j+1} \\ t_{j+3} \\ t_{j+4} \end{array} \begin{array}{c} t_{j+4} \\ t_{j+4} \end{array} \end{array}$$

 $\begin{array}{l} t_{j+2h}\equiv x_{j+h} \ (h=-2,...,2) \quad \mbox{knots for interpolation points} \\ t_{j+2h+1}=\frac{x_{j+h}+x_{j+h+1}}{2} \ (h=-2,...,1) \quad \mbox{intermediate knots} \end{array} \right\} \ \mbox{complete knot sequence} \label{eq:tau}$

 d_{j+h} (h = -2, ..., 1) knot intervals

= nar

・ 同 ト ・ ヨ ト ・ ヨ ト

The deg-2 NULICS basis

Step 1: *define the knot-partition*

$$\begin{array}{c} x_{j-2} \\ t_{j-4} \\ t_{j-2} \end{array} t_{j-3} \\ t_{j-2} \end{array} t_{j-2} \\ t_{j-2} \\ t_{j-2} \end{array} t_{j-1} \\ t_{j-1} \\ t_{j-1} \\ t_{j-1} \end{array} t_{j} \\ t_{j}$$

 $\begin{array}{l} t_{j+2h} \equiv x_{j+h} \quad (h = -2,...,2) \quad \text{knots for interpolation points} \\ t_{j+2h+1} \equiv \frac{x_{j+h} + x_{j+h+1}}{2} \quad (h = -2,...,1) \quad \text{intermediate knots} \end{array} \right\} \text{ complete knot sequence} \\ d_{j+h} \quad (h = -2,...,1) \quad \text{knot intervals} \end{array}$

Step 2: represent the deg-2 NULICS basis centered at t_i in terms of B-spline basis functions

$$\phi_{j,2}(x) = \sum_{i=0}^{5} b_i N_{i+j-4,2}(x)$$

where

$$b_0 = -\frac{(d_{j-2})^2}{4d_{j-1}(d_{j-2}+d_{j-1})} \qquad b_1 = \frac{d_{j-2}}{4(d_{j-2}+d_{j-1})} \qquad b_2 = \frac{d_{j-1}+3d_j}{4d_j} \\ b_3 = \frac{3d_{j-1}+d_j}{4d_{j-1}} \qquad b_4 = \frac{d_{j+1}}{4(d_j+d_{j+1})} \qquad b_5 = -\frac{(d_{j+1})^2}{4d_j(d_j+d_{j+1})}$$

and $N_{i+j-4,2}(x)$ is the quadratic B-spline with support $[t_{i+j-4}, t_{i+j-1}]$.

The deg-2 NULICS basis

Step 1: *define the knot-partition*

$$\begin{array}{c} x_{j-2} \\ t_{j-4} \\ t_{j-2} \end{array} t_{j-3} \\ t_{j-2} \end{array} t_{j-2} \\ t_{j-2} \\ t_{j-2} \end{array} t_{j-1} \\ t_{j-1} \\ t_{j-1} \\ t_{j-1} \end{array} t_{j} \\ t_{j}$$

 $\begin{array}{l} t_{j+2h} \equiv x_{j+h} \quad (h = -2,...,2) \quad \text{knots for interpolation points} \\ t_{j+2h+1} \equiv \frac{x_{j+h} + x_{j+h+1}}{2} \quad (h = -2,...,1) \quad \text{intermediate knots} \end{array} \right\} \text{ complete knot sequence} \\ d_{j+h} \quad (h = -2,...,1) \quad \text{knot intervals} \end{array}$

Step 2: represent the deg-2 NULICS basis centered at t_i in terms of B-spline basis functions

$$\phi_{j,2}(x) = \sum_{i=0}^{5} b_i N_{i+j-4,2}(x)$$

where

$$b_0 = -\frac{(d_{j-2})^2}{4d_{j-1}(d_{j-2}+d_{j-1})} \qquad b_1 = \frac{d_{j-2}}{4(d_{j-2}+d_{j-1})} \qquad b_2 = \frac{d_{j-1}+3d_j}{4d_j}$$

$$b_3 = \frac{3d_{j-1}+d_j}{4d_{j-1}} \qquad b_4 = \frac{d_{j+1}}{4(d_j+d_{j+1})} \qquad b_5 = -\frac{(d_{j+1})^2}{4d_j(d_j+d_{j+1})}$$

and $N_{i+j-4,2}(x)$ is the quadratic B-spline with support $[t_{i+j-4}, t_{i+j-1}]$.

The deg-2 NULICS basis

$$\phi_{j,2}(x_j) = 1, \qquad \phi_{j,2}(x_{j+h}) = 0 \quad \forall h \neq 0$$

Construction Refinement rules Main properties

Towards a NULI 4-pt scheme

• Let p_{j+h}^0 (h=-1,0,1,2) be the quadruple of starting points

Construction Refinement rules Main properties

Towards a NULI 4-pt scheme

- Let p_{j+h}^0 (h=-1,0,1,2) be the quadruple of starting points
- Let x_{j+h}^0 (h=-1,0,1,2) be the centripetal parameter values of p_{j+h}^0

不足下 不足下

Construction Refinement rules Main properties

Towards a NULI 4-pt scheme

- Let p_{i+h}^0 (h=-1,0,1,2) be the quadruple of starting points
- Let x_{j+h}^0 (h=-1,0,1,2) be the centripetal parameter values of p_{j+h}^0
- Compute $d_{j+h}^0 = rac{x_{j+h+1}^0 x_{j+h}^0}{2}$ (h=-1,0,1)

不足下 不足下

Construction Refinement rules Main properties

Towards a NULI 4-pt scheme

- Let p_{j+h}^0 (h=-1,0,1,2) be the quadruple of starting points
- Let x_{j+h}^0 (h=-1,0,1,2) be the centripetal parameter values of p_{j+h}^0
- Compute $d_{j+h}^0 = rac{x_{j+h+1}^0 x_{j+h}^0}{2}$ (h=-1,0,1)
- Let $\phi_{j+h,2}(x)$ be the NULICS basis centered at x^0_{j+h} (h=-1,0,1,2)

イヨト イヨトー

1

Construction Refinement rules Main properties

Towards a NULI 4-pt scheme

- Let p_{j+h}^0 (h=-1,0,1,2) be the quadruple of starting points
- Let x_{j+h}^0 (h=-1,0,1,2) be the centripetal parameter values of p_{j+h}^0
- Compute $d_{j+h}^0 = rac{x_{j+h+1}^0 x_{j+h}^0}{2}$ (h=-1,0,1)
- Let $\phi_{j+h,2}(x)$ be the NULICS basis centered at x^0_{j+h} (h=-1,0,1,2)

Compute

$$a_{h+1,j}^0 = \phi_{j+h,2}\left(\frac{x_j^0 + x_{j+1}^0}{2}\right)$$
 (h=-1,0,1,2)

イヨト イヨトー

1

Construction Refinement rules Main properties

Towards a NULI 4-pt scheme

Construction Refinement rules Main properties

The NULI 4-pt scheme

At each step $k \ge 0$

REFINEMENT EQUATIONS

$$\begin{array}{l} p_{2j}^{k+1} = p_{j}^{k} \\ p_{2j+1}^{k+1} = a_{0,j}^{k} \ p_{j-1}^{k} + a_{1,j}^{k} \ p_{j}^{k} + a_{2,j}^{k} \ p_{j+1}^{k} + a_{3,j}^{k} \ p_{j+2}^{k} \end{array}$$

$$\begin{split} a_{0,j}^{k} &= -\frac{(d_{j}^{k})^{2}}{8d_{j-1}^{k}(d_{j-1}^{k}+d_{j}^{k})} \\ a_{1,j}^{k} &= \frac{(d_{j}^{k})^{2} + (3d_{j-1}^{k}+d_{j+1}^{k})d_{j}^{k} + 4d_{j-1}^{k}d_{j+1}^{k}}{8d_{j-1}^{k}(d_{j}^{k}+d_{j+1}^{k})} \\ a_{2,j}^{k} &= \frac{(d_{j}^{k})^{2} + (d_{j-1}^{k}+3d_{j+1}^{k})d_{j}^{k} + 4d_{j-1}^{k}d_{j+1}^{k}}{8d_{j+1}^{k}(d_{j-1}^{k}+d_{j}^{k})} \\ a_{3,j}^{k} &= -\frac{(d_{j}^{k})^{2}}{8d_{j+1}^{k}(d_{j}^{k}+d_{j+1}^{k})} \end{split}$$

∃ → < ∃ →</p>

- R

Э

Construction Refinement rules Main properties

The NULI 4-pt scheme

At each step $k \ge 0$

REFINEMENT EQUATIONS

$$\begin{aligned} p_{2j}^{k+1} &= p_j^k \\ p_{2j+1}^{k+1} &= a_{0,j}^k \; p_{j-1}^k + a_{1,j}^k \; p_j^k + a_{2,j}^k \; p_{j+1}^k + a_{3,j}^k \; p_{j+2}^k \end{aligned}$$

$$\begin{split} a_{0,j}^{k} &= -\frac{(d_{j}^{k})^{2}}{8d_{j-1}^{k}(d_{j-1}^{k}+d_{j}^{k})} \\ a_{1,j}^{k} &= \frac{(d_{j}^{k})^{2} + (3d_{j-1}^{k}+d_{j+1}^{k})d_{j}^{k} + 4d_{j-1}^{k}d_{j+1}^{k}}{8d_{j-1}^{k}(d_{j}^{k}+d_{j+1}^{k})} \\ a_{2,j}^{k} &= \frac{(d_{j}^{k})^{2} + (d_{j-1}^{k}+3d_{j+1}^{k})d_{j}^{k} + 4d_{j-1}^{k}d_{j+1}^{k}}{8d_{j+1}^{k}(d_{j-1}^{k}+d_{j}^{k})} \\ a_{3,j}^{k} &= -\frac{(d_{j}^{k})^{2}}{8d_{j+1}^{k}(d_{j}^{k}+d_{j+1}^{k})} \end{split}$$

∃ ► < ∃ ►</p>

- R

3

Construction Refinement rules Main properties

The NULI 4-pt scheme

At each step $k \ge 0$

REFINEMENT EQUATIONS

$$\begin{aligned} p_{2j}^{k+1} &= p_j^k \\ p_{2j+1}^{k+1} &= a_{0,j}^k \; p_{j-1}^k \! + \! a_{1,j}^k \; p_j^k \! + \! a_{2,j}^k \; p_{j+1}^k \! + \! a_{3,j}^k \; p_{j+2}^k \end{aligned}$$

$$\begin{split} a_{0,j}^{k} &= -\frac{(d_{j}^{k})^{2}}{8d_{j-1}^{k}(d_{j-1}^{k}+d_{j}^{k})} \\ a_{1,j}^{k} &= \frac{(d_{j}^{k})^{2} + (3d_{j-1}^{k}+d_{j+1}^{k})d_{j}^{k} + 4d_{j-1}^{k}d_{j+1}^{k}}{8d_{j-1}^{k}(d_{j}^{k}+d_{j+1}^{k})} \\ a_{2,j}^{k} &= \frac{(d_{j}^{k})^{2} + (d_{j-1}^{k}+3d_{j+1}^{k})d_{j}^{k} + 4d_{j-1}^{k}d_{j+1}^{k}}{8d_{j+1}^{k}(d_{j-1}^{k}+d_{j}^{k})} \\ a_{3,j}^{k} &= -\frac{(d_{j}^{k})^{2}}{8d_{j+1}^{k}(d_{j}^{k}+d_{j+1}^{k})} \end{split}$$

∃ ► < ∃ ►</p>

- R

3

Construction Refinement rules Main properties

The NULI 4-pt scheme

At each step $k \ge 0$

REFINEMENT EQUATIONS

$$\begin{array}{l} p_{2j}^{k+1} = p_j^k \\ p_{2j+1}^{k+1} = a_{0,j}^k \; p_{j-1}^k \! + \! a_{1,j}^k \; p_j^k \! + \! a_{2,j}^k \; p_{j+1}^k \! + \! a_{3,j}^k \; p_{j+2}^k \end{array}$$

$$\begin{split} a_{0,j}^{k} &= -\frac{(d_{j}^{k})^{2}}{8d_{j-1}^{k}(d_{j-1}^{k}+d_{j}^{k})} \\ a_{1,j}^{k} &= \frac{(d_{j}^{k})^{2} + (3d_{j-1}^{k}+d_{j+1}^{k})d_{j}^{k} + 4d_{j-1}^{k}d_{j+1}^{k}}{8d_{j-1}^{k}(d_{j}^{k}+d_{j+1}^{k})} \\ a_{2,j}^{k} &= \frac{(d_{j}^{k})^{2} + (d_{j-1}^{k}+3d_{j+1}^{k})d_{j}^{k} + 4d_{j-1}^{k}d_{j+1}^{k}}{8d_{j+1}^{k}(d_{j-1}^{k}+d_{j}^{k})} \\ a_{3,j}^{k} &= -\frac{(d_{j}^{k})^{2}}{8d_{j+1}^{k}(d_{j}^{k}+d_{j+1}^{k})} \end{split}$$

∃ → < ∃ →</p>

- R

Э

Construction Refinement rules Main properties

The NULI 4-pt scheme

At each step $k \ge 0$

REFINEMENT EQUATIONS

$$\begin{aligned} p_{2j}^{k+1} &= p_j^k \\ p_{2j+1}^{k+1} &= a_{0,j}^k \ p_{j-1}^k + a_{1,j}^k \ p_j^k + a_{2,j}^k \ p_{j+1}^k + a_{3,j}^k \ p_{j+2}^k \end{aligned}$$

$$\begin{split} a_{0,j}^{k} &= -\frac{(d_{j}^{k})^{2}}{8d_{j-1}^{k}(d_{j-1}^{k}+d_{j}^{k})} \\ a_{1,j}^{k} &= \frac{(d_{j}^{k})^{2} + (3d_{j-1}^{k}+d_{j+1}^{k})d_{j}^{k} + 4d_{j-1}^{k}d_{j+1}^{k}}{8d_{j-1}^{k}(d_{j}^{k}+d_{j+1}^{k})} \\ a_{2,j}^{k} &= \frac{(d_{j}^{k})^{2} + (d_{j-1}^{k}+3d_{j+1}^{k})d_{j}^{k} + 4d_{j-1}^{k}d_{j+1}^{k}}{8d_{j+1}^{k}(d_{j-1}^{k}+d_{j}^{k})} \\ a_{3,j}^{k} &= -\frac{(d_{j}^{k})^{2}}{8d_{j+1}^{k}(d_{j}^{k}+d_{j+1}^{k})} \end{split}$$

- R

< ∃⇒

3

Construction Refinement rules Main properties

The NULI 4-pt scheme

>
$$d_j^0$$
 starting parameters

At each step $k \ge 0$

REFINEMENT EQUATIONS

$$p_{2j}^{k+1} = p_j^k$$

$$p_{2j+1}^{k+1} = a_{0,j}^k p_{j-1}^k + a_{1,j}^k p_j^k + a_{2,j}^k p_{j+1}^k + a_{3,j}^k p_{j+2}^k$$

$$\begin{split} a_{0,j}^{k} &= -\frac{(u_{j})}{8d_{j-1}^{k}(d_{j-1}^{k}+d_{j}^{k})} \\ a_{1,j}^{k} &= \frac{(d_{j}^{k})^{2} + (3d_{j-1}^{k}+d_{j+1}^{k})d_{j}^{k} + 4d_{j-1}^{k}d_{j+1}^{k}}{8d_{j-1}^{k}(d_{j}^{k}+d_{j+1}^{k})} \\ a_{2,j}^{k} &= \frac{(d_{j}^{k})^{2} + (d_{j-1}^{k} + 3d_{j+1}^{k})d_{j}^{k} + 4d_{j-1}^{k}d_{j+1}^{k}}{8d_{j+1}^{k}(d_{j-1}^{k}+d_{j}^{k})} \\ a_{3,j}^{k} &= -\frac{(d_{j}^{k})^{2}}{8d_{j}^{k} + (d_{j}^{k}+d_{j-1}^{k})} \end{split}$$

(ak)2

Coefficients $a_{0,j}^k, ..., a_{3,j}^k$ coincide with the values of the deg-2 basis functions $\phi_{j-1,2}, ..., \phi_{j+2,2}$ defined on the refined knot-partition with $d_j^0/2^k$ -length intervals, at the central knot $\frac{x_j^k + x_{j+1}^k}{2}$.

Construction Refinement rules Main properties

The NULI 4-pt scheme

At each step $k \ge 0$

REFINEMENT EQUATIONS

$$\begin{aligned} p_{2j}^{k+1} &= p_j^k \\ p_{2j+1}^{k+1} &= a_{0,j}^k \; p_{j-1}^k \! + \! a_{1,j}^k \; p_j^k \! + \! a_{2,j}^k \; p_{j+1}^k \! + \! a_{3,j}^k \; p_{j+2}^k \end{aligned}$$

$$\begin{split} a_{0,j}^{k} &= -\frac{(d_{j}^{k})^{2}}{8d_{j-1}^{k}(d_{j-1}^{k}+d_{j}^{k})} \\ a_{1,j}^{k} &= \frac{(d_{j}^{k})^{2} + (3d_{j-1}^{k}+d_{j+1}^{k})d_{j}^{k} + 4d_{j-1}^{k}d_{j+1}^{k}}{8d_{j-1}^{k}(d_{j}^{k}+d_{j+1}^{k})} \\ a_{2,j}^{k} &= \frac{(d_{j}^{k})^{2} + (d_{j-1}^{k}+3d_{j+1}^{k})d_{j}^{k} + 4d_{j-1}^{k}d_{j+1}^{k}}{8d_{j+1}^{k}(d_{j-1}^{k}+d_{j}^{k})} \\ a_{3,j}^{k} &= -\frac{(d_{j}^{k})^{2}}{8d_{i+1}^{k}(d_{i}^{k}+d_{i+1}^{k})} \end{split}$$

>
$$d_{2j}^{k+1} = d_{2j+1}^{k+1} = \frac{d_j^k}{2}$$

parameters updating

Construction Refinement rules Main properties

Important remarks

The centripetal parameterization {x_j^k}_{j∈Z} for the point set {p_j^k}_{j∈Z} is *not* recomputed at each step.

Construction Refinement rules Main properties

Important remarks

• The centripetal parameterization $\{x_j^k\}_{j\in\mathbb{Z}}$ for the point set $\{p_j^k\}_{j\in\mathbb{Z}}$ is *not* recomputed at each step.

Starting parameters d_j^0 are simply updated through the formula

$$d_{2j}^{k+1} = d_{2j+1}^{k+1} = \frac{d_j^k}{2}$$

Construction Refinement rules Main properties

Important remarks

The centripetal parameterization {x_j^k}_{j∈Z} for the point set {p_j^k}_{j∈Z} is *not* recomputed at each step.

Starting parameters d_j^0 are simply updated through the formula

$$d_{2j}^{k+1} = d_{2j+1}^{k+1} = \frac{d_j^k}{2}$$

the NULI 4-pt scheme is LINEAR!

Construction Refinement rules Main properties

Important remarks

The centripetal parameterization {x_j^k}_{j∈Z} for the point set {p_j^k}_{j∈Z} is *not* recomputed at each step.

Starting parameters d_j^0 are simply updated through the formula

$$d_{2j}^{k+1} = d_{2j+1}^{k+1} = \frac{d_j^k}{2}$$

the NULI 4-pt scheme is LINEAR!

• When all d_i^0 are equal, the NULI 4-pt scheme becomes the uniform 4-pt:

$$a_{0,j}^k = a_{3,j}^k = -\frac{1}{16}, \quad a_{1,j}^k = a_{2,j}^k = \frac{9}{16}$$

Construction Refinement rule: Main properties

Properties of the NULI 4-pt scheme

QUADRATIC NULICS

NULI 4-POINT

3 N 3

Construction Refinement rule: Main properties

Properties of the NULI 4-pt scheme

QUADRATIC NULICS

NULI 4-POINT

• local support $[x_{j-2}, x_{j+2}]$ ([-2,2] in the uniform case)

→ local support $[x_{j-3}, x_{j+3}]$ ([-3,3] in the uniform case)

Construction Refinement rule: Main properties

Properties of the NULI 4-pt scheme

QUADRATIC NULICS

- local support $[x_{j-2}, x_{j+2}]$ ([-2,2] in the uniform case)
- C^1 smoothness

NULI 4-POINT

- → local support $[x_{j-3}, x_{j+3}]$ ([-3,3] in the uniform case)
- \blacktriangleright C^1 smoothness

Construction Refinement rule: Main properties

Properties of the NULI 4-pt scheme

QUADRATIC NULICS

- local support $[x_{j-2}, x_{j+2}]$ ([-2,2] in the uniform case)
- C^1 smoothness
- polynomials reproduction up to deg-2, also starting from non-equispaced samples

NULI 4-POINT

- → local support $[x_{j-3}, x_{j+3}]$ ([-3,3] in the uniform case)
- \blacktriangleright C^1 smoothness
- ➡ polynomials reproduction:
 - up to deg-2 starting from *non-equispaced* samples
 - up to deg-3 starting from equispaced samples

- 2 国际 - 2 国际

Construction Refinement rules Main properties

Support

Proposition 1

The basis function for the NULI 4-pt scheme has local support $[x_{j-3}, x_{j+3}]$.

Proof.

At step k = 0 the support width is $\sigma = [x_{j-2}, x_{j+2}]$. At each successive step it is extended by

$$\frac{x_{j-2} - x_{j-3}}{2^k}$$
 and $\frac{x_{j+3} - x_{j+3}}{2^k}$

on the left and right side respectively. Thus, after N steps it will be

$$\sigma = \left[x_{j-2} - \sum_{k=1}^{N} \frac{x_{j-2} - x_{j-3}}{2^k}, x_{j+2} + \sum_{k=1}^{N} \frac{x_{j+3} - x_{j+2}}{2^k} \right]$$

and therefore when $N \to +\infty \ \sigma = [x_{j-3}, x_{j+3}].$

Construction Refinement rules Main properties

Support

3

Smoothness analysis

Proposition 2

The NULI 4-pt scheme generates C^1 limit curves for any choice of initial knots.

Proof.

After a few rounds of subdivision, we come to the knot intervals configuration

$$\dots, a, a, b, b, b, \dots$$
 $(a, b > 0)$

which corresponds to the eigenanalysis of the local subdivision matrix

	$\int -\frac{1}{16}$	$\frac{9}{16}$	$\frac{9}{16}$	$-\frac{1}{16}$	0	0	0 J	
	0	0	1	0	0	0	0	
	0	$-\frac{1}{16}$	$\frac{4a+5b}{8(a+b)}$	$\frac{2a+7b}{16b}$	$-\frac{a^2}{8b(a+b)}$	0	0	
M =	0	0	0	1	0	0	0	
	0	0	$-\frac{b^2}{8a(a+b)}$	$\frac{7a+2b}{16a}$	$\frac{5a+4b}{8(a+b)}$	$-\frac{1}{16}$	0	
	0	0	0	0	1	0	0	
	LΟ	0	0	$-\frac{1}{16}$	$\frac{9}{16}$	$\frac{9}{16}$	$-\frac{1}{16}$	

C. Beccari, G. Casciola, L. Romani* Non-uniform interpolatory subdivision designed from splines

Construction Refinement rules Main properties

Smoothness analysis

- Eigenvalues of M: $\lambda_0 = 1$, $\lambda_1 = \frac{1}{2}$, $|\lambda_i| < \frac{1}{2} \quad \forall i \ge 2$
- *Right eigenvectors* for λ_0 and λ_1 : $v_0 = \begin{bmatrix} 1\\1\\1\\1\\1\\1\\1\\1 \end{bmatrix}$, $v_1 = \begin{bmatrix} -3\\-2\\-1\\0\\1/(ab)\\2/(ab)\\3/(ab) \end{bmatrix}$

The characteristic map $\psi[s, x]$ (where s = 0, 1 enumerates the two sectors identified around the EV) is the scalar limit function associated with v_1 . Because $\psi[0, x] = -x$ and $\psi[1, x] = x/(ab)$ for x > 0, thus $\psi[0, x]$ and $\psi[1, x]$ cover respectively the negative and the positive portion of the parameter line in a 1-1 manner. Therefore ψ is *regular* (i.e. it is a 1-1 and onto covering of the parameter line). This proves C^1 continuity of the associated scheme.

- 不同 ト イラト イラト

Construction Refinement rules Main properties

Polynomial reproducibility

Proposition 3

The NULI 4-pt scheme can reproduce

- the set Π_2 of polynomials up to deg-2 starting from non-equispaced samples
- the set Π_3 of polynomials up to deg-3 starting from equispaced samples.

Proof.

The result follows from the fact that, starting with a point set $P^0 \in \Pi_2$, at each level $k \ge 0$ we compute P^{k+1} by evaluating the NULICS interpolant with basis $\phi_{j,2}$ on knots x_j^k , at $\frac{x_j^k + x_{j+1}^k}{2}$.

 Π_3 can be reproduced only when starting from equispaced samples because in this case the refinement rules become those of the classical 4-pt scheme.

不同下 不足下 不足下

Example 1

NULI 4-pt limit curve

NULICS quadratic interpolant

Э

Example 1

NULI 4-pt limit curve

NULICS quadratic interpolant

3.5 3

C. Beccari, G. Casciola, L. Romani* Non-uniform interpolatory subdivision designed from splines

Example 1: interpolation curves comparison

NULI 4-point limit curve NULICS quadratic interpolant the subdivision curve approximates the initial polyline more closely!

Example 2

NULI 4-pt limit curve

NULICS quadratic interpolant

< 17 >

 $\exists \rightarrow$

3

 $\exists \rightarrow$

C. Beccari, G. Casciola, L. Romani* Non-uniform interpolatory subdivision designed from splines

Example 2

NULI 4-pt limit curve

NULICS quadratic interpolant

イロト イポト イヨト イヨト

3

C. Beccari, G. Casciola, L. Romani* Non-uniform interpolatory subdivision designed from splines

Example 2: interpolation curves comparison

NULI 4-point limit curve NULICS quadratic interpolant

∞ the subdivision curve approximates the initial polyline more closely!

Conclusions

We have seen:

• a new idea to construct spline-based high-quality 2*n*-point interpolatory subdivision schemes;

Conclusions

We have seen:

- a new idea to construct spline-based high-quality 2*n*-point interpolatory subdivision schemes;
- a simplified explicit formulation for Chui and De Villiers NULICS;

3 N

Conclusions

We have seen:

- a new idea to construct spline-based high-quality 2*n*-point interpolatory subdivision schemes;
- a simplified explicit formulation for Chui and De Villiers NULICS;
- a novel 4-pt subdivision scheme: non-uniform, local, interpolating (NULI), C^1 , able to reproduce polynomials up to degree 2 also when starting from non-equispaced samples.

Conclusions

We have seen:

- a new idea to construct spline-based high-quality 2*n*-point interpolatory subdivision schemes;
- a simplified explicit formulation for Chui and De Villiers NULICS;
- a novel 4-pt subdivision scheme: non-uniform, local, interpolating (NULI), C^1 , able to reproduce polynomials up to degree 2 also when starting from non-equispaced samples.

The new family of non-uniform interpolatory schemes

• includes 2n-point refinement rules designed from deg-n spline interpolants;

イヨトイヨト

The NULI 6-point scheme

NULI 6-pt limit curve

NULICS cubic interpolant

- cubics reproduction from non-uniform samples
- support $\sigma = [x_{j-5}, x_{j+5}]$
- smoothness C^2

The NULI 6-point scheme

NULI 6-pt limit curve

NULICS cubic interpolant

- cubics reproduction from non-uniform samples
- support $\sigma = [x_{j-5}, x_{j+5}]$
- smoothness C^2

Conclusions

We have seen:

- a new idea to construct spline-based high-quality 2*n*-point interpolatory subdivision schemes;
- a simplified explicit formulation for Chui and De Villiers NULICS;
- a novel 4-pt subdivision scheme: non-uniform, local, interpolating (NULI), C^1 , able to reproduce polynomials up to degree 2 also when starting from non-equispaced samples.

The new family of non-uniform interpolatory schemes

- includes 2n-point refinement rules designed from deg-n spline interpolants;
- produces spline-quality curves that faithfully mimic the behaviour of the initial set of points;

Conclusions

We have seen:

- a new idea to construct spline-based high-quality 2*n*-point interpolatory subdivision schemes;
- a simplified explicit formulation for Chui and De Villiers NULICS;
- a novel 4-pt subdivision scheme: non-uniform, local, interpolating (NULI), C^1 , able to reproduce polynomials up to degree 2 also when starting from non-equispaced samples.

The new family of non-uniform interpolatory schemes

- includes 2n-point refinement rules designed from deg-n spline interpolants;
- produces spline-quality curves that faithfully mimic the behaviour of the initial set of points;
- establishes a fundamental step towards the construction of a spline-quality interpolatory scheme for surfaces of arbitrary topology
 SIMAI Conference, Rome (Italy) - September '08

Non-uniform local interpolatory subdivision surfaces (NULISS)

C. Beccari, G. Casciola, L. Romani* Non-uniform interpolatory subdivision designed from splines

Non-uniform local interpolatory subdivision surfaces (NULISS)

C. Beccari, G. Casciola, L. Romani* Non-uniform interpolatory subdivision designed from splines

Bibliography

J.J. Chen, A.K. Chan, C.K. Chui, 1994. A Local Interpolatory Cardinal spline method for the determination of Eigenstates in Quantum-Well Structures with Arbitrary Potential Profiles, IEEE Journal of Quantum Electronics, Vol.30, No.2, pp. 269-274.

C.K. Chui, 1990. Vertex splines and their applications to interpolation of discrete data, in Computation of Curves and Surfaces, W. Dahmen, M. Gasca and C.A. Micchelli Eds., pp. 137-181.

C.K. Chui and J.M. De Villiers, 1996. *Applications of Optimally Local Interpolation to Interpolatory Approximants and Compactly Supported Wavelets*, Mathematics of Computation Vol.65, No.213, pp. 99-114.

W. Dahmen, T.N.T Goodman, C.A. Micchelli, 1988. *Compactly Supported Fundamental Functions for Spline Interpolation*, Numerische Mathematik, No.52, pp. 639-664.

N. Dyn, M. Floater, K. Hormann, 2007. *Four-Point Curve Subdivision Based on Iterated Chordal and Centripetal Parameterizations*, Technical Report, TU Clausthal.

M. Floater, 2008. On the Deviation of a Parametric Cubic Spline Iterpolant from its Data Polygon, CAGD, No.25, pp. 148-156.

- 4 同 1 - 4 回 1 - 4 回 1

3

Thank you!

イロト イポト イヨト イヨト

3